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Abstract By using a relation connecting the global stability and Hopf bifurcation,
the existence of limit cycles in a three-dimensional bio-reactor model of exploitative
competition of two predator organisms with inhibition responses for the same renew-
able organism with reproductive properties is obtained. We also correct the proof of
the main result in a previous paper of the same model (Su et al., J. Math. Chem., 2007).
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1 Introduction

The purpose of this short article is to correct the mistake in the proof of the main result
in paper [1] (Journal of Mathematical Chemistry, 2007), and then give an analytical
proof of the existence of 3-D limit cycles in the 3-D bio-reactor model of exploit-
ative competition of two predator organisms with inhibition responses for the same
renewable organism with reproductive properties. The model studied in [1] takes the
form:

d S

dt
= γ S

(
1 − S

K

)

− m1d1S

(a1 + S)(b1 + S)

x1

δ1
− m2d2S

(a2 + S)(b2 + S)

x2

δ2
,

dx1

dt
=

(
m1d1S

(a1 + S)(b1 + S)
− d1

)
x1,
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dx2

dt
=

(
m2d2S

(a2 + S)(b2 + S)
− d2

)
x2,

S(0) > 0, x1(0) > 0, x2(0) > 0. (1)

This can be considered a generalization of the so-called Rosenzweig–MacArthur
model of three level food chains [2]. It can also be considered as the predator–prey
system consisting two predators x1 and x2, and a single prey species S, the renewable
resource in the reaction vessel at time t . The parameters, γ is the growth rate, and K ,
the carrying capacity of the renewable resource S. mi , ai and di ,i = 1, 2, are maximum
predation rates, half saturation constants, and death rate of predators. The predators:
x1 and x2 consume the prey with functional response of inhibition type m1d1 S

(a1+S)(b1+S)

and m2d2 S
(a2+S)(b2+S) , respectively. δi is the yield constant for the predator xi , which is

assumed as 1 in our discussion. It is noticed that in the case of the Rosenzweig–
MacArthur model, the functional response is in Michaelis–Menten type: m1 S

a1+S and
m2 S

a2+S , which are monotone, but in the inhibition type is non-monotone.

The relationship between dynamic complexity and mean yield of such exploited
food chains was first studied by Rosenzweig in his famous paper, where he says “Man
must be very careful in attempting to enrich an ecosystem in order to increase its food
yield. There is a real chance that such activity may result in decimation of the food
species that are wanted in greater abundance” [3]. It has been shown (May [4] and
Gilpin [5]) that for low prey carrying capacities such food chains settle to a positive
equilibrium, while for higher carrying capacities the asymptotic regime is cyclic. The
positive equilibrium loses stability when the carrying capacity is increased and when
it becomes unstable, the attractor becomes a stable limit cycle. It is also proved (in
[4]) that the mean yield associated to the attractor of a food chain first increases and
then decreases with prey carrying capacity and reaches its maximum for K = K ∗,
where K ∗ is the critical value of the carrying capacity separating stationary from cyclic
regimes.

As to the cyclic regimes, it was shown that there are either low-frequency or high-
frequency regimes. A low-frequency limit cycle obtained by a computer numerical
simulation for Rosenzweig–MacArthur model is shown in Fig. 1, as an example ([2]).

Fig. 1 A limit cycle of
low-frequency in
Rosenzweig–MacArthur model
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Since the behavior of solutions of the three-level food-chain bio-reactor model (1) is
very complicated, even for the case of simple Michaelis–Menten type response, most
of the results are derived by numerical simulation. Therefore, a further study is very
necessary. Recently, [1] using a modified Lyapunov function and LaSalle’s invariant
principle proved the global stability of the model. The results show that in the compe-
tition of two predator organisms for a single prey organism with inhibition responses
and with different death rates of the predator species, the lower “break-even” predator
organism survives in the competition. In the proof of their main result (Theorem 3,
[1]), it is supposed to show that V̇ ≤ 0, where

V (S, x1, x2) = xθ1

∫ S

λ1

(m1 − a1 − b1)ξ − ξ2 − a1b1

m1ξ
dξ

+
∫ x1

h1(λ1)

ξ θ−1(ξ − h1(λ1))dξ + cxθ1 x2. (2)

In the process of differentiation of V (S, x1, x2), both the parameter θ and c were
assumed to be constants. Actually, in [1], it was chosen that c = �(λ1)(> 0). Unfor-
tunately, in that case the main formula (22) in the proof of [1] is not valid because
�(S) takes the form:

�(S) =
(
θd1(λ

′
1 − S)(a2 + S)(b2 + S)+ m2d2(a2b2 − Sλ1)(a1 + S)(b1 + S)

(a2 + λ1)(b2 + λ1)

)

· S − λ1

(a2 + S)(a1 + S)(b2 + S)(b1 + S)

(
�(λ1)− (λ′

1 − S)�(S)
)
, (3)

which has a factor λ′
1 − S beforeψ(S) and which is not always ≤ 0 even though�(S)

is increasing. Therefore, the proof of Theorem 3 of [1] is wrong.
Moreover, formula (16) in [1] has a sign problem which should be

(m1 − a1 − b1)S − S2 − a1b1 = (S − λ1)(λ
′
1 − S), (4)

and there are mistakes in the expressions of V3,�(S), ψ(S), ψ ′(S) and also in for-
mulas (17–21) and (24).

The construction of a Lyapunov function in establishing the global stability of a
equilibrium is not easy. However, once the Lyapunov function is obtained, then the
global stability follows directly from the LaSalle’s invariant principle. The basic idea
of [1] is correct and interesting if we can fix the proof by choose the parameter c as
a variable not a constant and make sure that the Lyapunov–LaSalle’s principle also
works for the food-chain bio-reactor with the non-monotonic inhibition responses.

As is well known, a mathematical proof instead of a computer simulation of the
existence of limit cycles for a 3-D differential system is very hard. This is because
the powerful tools in the plane system like Poincare–Bendixson theorem cannot be
applied directly to the cases of n ≥ 3, in general. Some counterexamples can be found
in D’Heedene [6] and Schweitzer [7]. In this paper, by applying the center manifold
theorem [8,9], we build a relationship between the global stability and the 3-D Hopf
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bifurcation. Then the existence of limit cycles for the three-dimensional food-chain
bio-reactor model is obtained consequently. The method used here can be extended to
many other 3-D differential equation systems. Here we just provide another example.
By comparing to prove the existence of 3-D limit cycles directly and analytically, our
method is much simple.

The main results are presented in the next two sections.

2 Proof of Theorem 3 of [1]

Theorem A If λ1 < λ2, and if S1 ≤ λ1, then E1(λ1, h1(λ1), 0) is globally asymp-
totically stable.

Proof Let V (S, x1, x2) be defined as in (2). The derivative of V along the trajectory
of system (1) is

V̇ (S, x1, x2) = xθ1
(m1 − a1 − b1)S − S2 − a1b1

m1S

×
(
γ S

(
1 − S

K

)
− m1d1S

(a1 + S)(b1 + S)
x1 − m2d2S

(a2 + S)(b2 + S)
x2

)

+
(

xθ1 − h1(λ1)x
θ−1

1 + θx
θ−1

1

∫ S

λ1

(m1 − a1 − b1)ξ − ξ2 − a1b1

m1ξ
dξ

)

×
(

m1d1S

(a1 + S)(b1 + S)
− d1

)
x1

+ cθxθ1

(
m1d1S

(a1 + S)(b1 + S)
− d1

)
x2

+ cxθ1

(
m2d2S

(a2 + S)(b2 + S)
− d2

)
x2 + c′xθ1 x2,

where θ is a constant, and c = c(S), a function of S, c′ is the derivative of c(S).
Denote

V̇ (S, x1, x2) = V1 + V2 + V3 + V4,

with

V1 = xθ1
(m1 − a1 − b1)S − S2−a1b1

(a1+S)(b1 + S)

(
γ

m1d1 K
(K − S)(a1 + S)(b1 + S)− h1(λ1)

+ θ
∫ S

λ1

(m1 − a1 − b1)S − S2 − a1b1

m1ξ
dξ

)
,
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V2 = cxθ1 x2

(
m2d2λ1

(a2 + λ1)(b2 + λ1)
− d2

)
,

V3 = xθ1 x2

(
− (m1 − a1 − b1)S − S2 − a1b1

m1S

m2d2S

(a2 + S)(b2 + S)

+ cθ

(
m1d1S

(a1 + S)(b1 + S)
− d1

)

+ c

(
m2d2S

(a2 + S)(b2 + S)
− m2d2λ1

(a2 + λ1)(b2 + λ1)

))
, V4 = c′(S)xθ1 x2.

It is easy to see that V1 and V2 are non-positive as shown in [1]. We only prove V3 and
V4 non-positive. For that purpose, let

�(S) = −m2d2

(a2 + S)(b2 + S)

(m1 − a1 − b1)S − S2 − a1b1

m1

+ cθd1
(m1 − a1 − b1)S − S2 − a1b1

(a1 + S)(b1 + S)

+ c

(
m2d2S

(a2 + S)(b2 + S)
− m2d2λ1

(a2 + λ1)(b2 + λ1)

)
. (5)

By (4), it follows that

�(S) = −m2d2

m1(a2 + S)(b2 + S)
(S − λ1)(λ

′
1 − S)+ cθd1

(S − λ1)(λ
′
1 − S)

(a1 + S)(b1 + S)

+ c
m2d2(S − λ1)(a2b2 − Sλ1)

(a2 + S)(b2 + S)(a2 + λ1)(b2 + λ1)
;

and hence,

�(S) = S−λ1

(a2+S)(a1+S)(b2+S)(b1+S)

(−m2d2(λ
′
1−S)(a1+S)(b1+S)

m1

+ cθd1(λ
′
1−S)(a2+S)(b2+S)+cm2d2(a2b2−Sλ1)(a1+S)(b1+S)

(a2+λ1)(b2+λ1)

)
.

(6)

Define

�(S) =
m2d2
m1

(a1 + S)(b1 + S)

θd1(λ
′
1 − S)(a2 + S)(b2 + S)+ m2d2(a2b2−Sλ1)(a1+S)(b1+S)

(a2+λ1)(b2+λ1)

. (7)

Following the same argument as in [1], we can show that � ′(S) > 0.
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Since a2b2 − Sλ1 > 0, we can choose c = (λ′
1 − S)�(λ1) > 0. It follows that

�(S) =
(
θ(λ′

1 − S)(a2 + S)(b2 + S)+ m1d1(a2b2 − Sλ1)(a1 + S)(b1 + S)

(a2 + λ1)(b2 + λ1)

)

× (S − λ1)

(a2 + S)(a1 + S)(b2 + S)(b1 + S)

(
c − (λ′

1 − S)�(S)
)

=
(
θ(λ′

1 − S)(a2 + S)(b2 + S)+ m1d1(a2b2 − Sλ1)(a1 + S)(b1 + S)

(a2 + λ1)(b2 + λ1)

)

× (S − λ1)(λ
′
1 − S)

(a2 + S)(a1 + S)(b2 + S)(b1 + S)
(ψ(λ1)−�(S))

≤ 0, (8)

since � ′(S) > 0.
Therefore, �(S) is always negative if S �= λ1, and so is V3.

For V4, we have

V4 = c′(S)xθ1 x2 = −xθ1 x2 ≤ 0.

Therefore, V̇ (S, x, y) = V1 + V2 + V3 + V4 ≤ 0.
Then using the LaSalle’s invariant principle, the same argument as in [1] will finish

the proof of Theorem A. ��

3 Existence of 3-D limit cycles

The following lemma is useful for the existence of limit cycles. Letµ be the bifurcation
parameter, and rewrite system (1) in µ as follows:

d X

dt
= f (X, µ). (9)

The global stability of an equilibrium is connected with the Hopf bifurcation by the
center manifold theorem.

Theorem B Let W be an open set in R3, O = (0, 0, 0) ∈ W , and the analytic func-
tion f is defined as f : W × (−µ0, µ0) → R3, where µ0 is a small positive number.
Denote the Jacobian of f at (X, µ) = (O, 0) as J ( f (O, 0)). Assume

(i) system (9) has (0, 0, 0) as its equilibrium point for any µ;
(ii) the eigenvalues of J ( f (O, 0)) are ±iβ(µ)|µ=0 = ±iβ(0), α(µ)|µ=0 = α(0)

which satisfy the conditions β(0) > 0, α(0) < 0.

Then, if (0, 0, 0) is asymptotically stable at µ = 0, unstable on µ > 0, there exists a
sufficiently small µ,µ > 0 such that system (9) has an asymptotically stable closed
orbit surrounding (0, 0, 0).

The proof of Theorem B can be found in [8,9]. In order to use this result, we prove
the next theorem.
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Theorem 1 If λ1 < λ2 and S1 > λ1, E1 is a unstable equilibrium of system (1).

Proof Consider the Jocobian of system (1) at E1, J (E1) = (ai j ), i, j = 1, 2, 3. It
follows that its characteristic equation is

(r − a33)(r
2 − a11r − a12a21) = 0, (10)

where

a11 = γ (1 − 2λ1/K )− m1d1(a1b1 − λ2
1)

(a1 + λ1)2(b1 + λ1)2
h1(λ1), a12 = −m1d1λ1

(a1 + λ1)(b1 + λ1)
,

a21 = m1d1(a1b1 − λ2
1)

(a1 + λ1)2(b1 + λ1)2
h1(λ1), a33 = m2d2λ1

(a1 + λ1)(b1 + λ1)
− d2.

Assume the three roots of (10) as r1, r2 and r3. It follows that

r1 + r2 = a11, r1r2 = −a12a21 > 0(since a1b1 > λ2
1),

r3 = a33 < 0(since λ1 < λ2).

Therefore, if

a11

{
>0, r1 and r2 have positive real part, E1 is unstable;
<0, r1 and r2 have negative real part, E1 is stable.

Notice that

a11 = γ (1 − 2λ1/K )− m1d1(a1b1 − λ2
1)

(a1 + λ1)2(b1 + λ1)2

γ

m1d1

(
1 − λ1

K

)
(a1 + λ1)(b1 + λ1)

= γ λ1

K (a1 + λ1)(b1 + λ1)

(
−3λ2

1 + 2(K − a1 − b1)λ1 + K (a1 + b1)− a1b1

)
.

Since S1 is the only point such that h′
1(S1) = 0 on (0, K ], it follows that if S1 <

λ1, a11 < 0 and E1 is stable; if S1 > λ1, a11 > 0 and E1 is unstable but with a
one-dimensional stable manifold. The proof of Theorem 1 is complete. ��

Now, assume µ = S1 − λ1 is a bifurcation parameter. We are going to prove

Theorem 2 If λ1 < λ2, then system (1) undergoes a Hopf bifurcation at µ =
S1 − λ1 = 0, and the periodic solution created by the Hopf bifurcation is asymp-
totically stable for
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Proof Since λ1 = µ − S1, m1 = (a1+λ1)(b1+λ1)
λ1

, system (1) can be written in µ as
follows:

S′
1 = ϕ1(S, x1, x2, µ),

x ′
1 = ϕ2(S, x1, x2, µ),

x ′
2 = ϕ3(S, x1, x2, µ). (11)

Use the variable changes:

S̄ = S − λ1, x̄1 = x1 − h1(λ1), x̄2 = x2,

system (1) in variables S̄, x̄1, x̄2 is

d X

dt
= f (X, µ), (12)

whose Jacobian is denoted as J (S̄, x̄1, x̄2).
Consider system (12) and its Jacobian at µ = 0 and (S̄, x̄1, x̄2) = (0, 0, 0),

J ( f (O, 0))

= J (S̄, x̄1, x̄2)

∣∣∣∣∣∣∣ (S̄, x̄1, x̄2)=(0, 0, 0)
µ = 0

= J (S, x1, x2)

∣∣∣∣∣∣∣ (S, x2, x3)=(λ1, h1(λ1), 0)
S1 = λ1

.

Its characteristic equation has the eigenvalues: ±iβ(0) and α(0), where

β(0) =
√

m2
1d2

1λ1(a1b1 − λ2
1)

(a1 + λ1)3(b1 + λ1)3
> 0,

α(0) = m2d2λ1

(a2 + λ1)(b2 + λ1)
− d2 < 0(sinceλ1 < λ2).

By Theorem B when λ1 < λ2 and S1 ≤ λ1, the equilibrium E1 is globally asymptoti-
cally stable, and by Theorem 1, when S1 > λ1, it is unstable. Therefore, the hypotheses
of Theorem B are satisfied. Actually, we have

(1) The equilibrium of system (1): O = (0, 0, 0) in the S̄, x̄1, x̄2 coordinate, or
E1 =(λ1, h(λ1), 0) in S, x1, x2, is globally asymptotically stable if µ=0;

(2) and, it is unstable if µ > 0.

Therefore, system (12) undergoes a Hopf bifurcation at µ = 0, and so does system
(1) at S1 = λ1. From Theorem B it follows that, for a sufficient small µ,µ > 0,
system (12) has an asymptotically stable closed orbit surrounding (0, 0, 0). In other
words, for 0 < S1 − λ1 << 1, system (1) has an asymptotically stable closed orbit
surrounding E1(λ1, h(λ1), 0). The proof of Theorem 2 is complete. ��
Theorem 3 If λ1 < λ2, system (1) has at least one limit cycle around the equili-
brium E1.
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Fig. 2 Example of limit cycles of competition in bio-reactor

4 Discussion

Competition between species exploiting a common prey species is probably frequent
occurrence in both nature and laboratory. However, not many theoretical work has
been done on such systems [10,11]. Moreover, in most of the population models, the
functional responses are chosen to be some monotonic functions such as Monod (or
Michaelis–Menten) type. But in real world applications, it is not always the case. The
one with non-monotonic inhibition response is, of course, worth a further study.

Recently, a quite similar food chain model but with Monod functional response is
published [12] with some numerical results. The limit cycles in the numerical simula-
tion of [12] take the following forms which give us some idea about the locations and
shapes of limit cycles in the model (1.1) (Fig. 2).

It is known to all that a limit cycle in mathematical model corresponds to the
nonlinear oscillation phenomena in the bio-reactor system. Thus the study of limit
cycles of the model is useful in analyzing the behavior of the reactor. Actually, the
reacting behavior of the food-chain bio-reactor system is very complicated. Computer
simulation shows that it includes stationary, cyclic and chaotic coexistence [13,14].
Therefore, a further mathematical analysis of the food-chain bio-reactor is definitely
necessary.

We also correct the mistakes in the proof of the main result in paper [1], which helps
the readers to understand the competition in the bio-reactor system more precisely and
clearly.
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